Fit Models#
Fit models for curve fitting functionality.
This module provides common fit functions and parameter management for curve fitting in the mdaviz application.
- class mdaviz.fit_models.ErrorFunctionFit[source]#
Error function fit model.
- _error_function(x: numpy.ndarray, amplitude: float, center: float, sigma: float, offset: float) numpy.ndarray [source]#
Error function (erf) with scaling and offset.
Parameters: - x: X values - amplitude: Amplitude scaling factor - center: Center position (shift) - sigma: Width parameter - offset: Vertical offset
Returns: - Y values of error function
- class mdaviz.fit_models.ExponentialFit[source]#
Exponential fit model.
- class mdaviz.fit_models.FitModel(name: str, function: Callable, parameters: list[str])[source]#
Base class for fit models.
- _get_default_initial_guess(x_data: numpy.ndarray, y_data: numpy.ndarray) dict[str, float] [source]#
Get default initial parameter guesses.
Parameters: - x_data: X values - y_data: Y values
Returns: - Dictionary of parameter names and default values
- fit(x_data: numpy.ndarray, y_data: numpy.ndarray, initial_guess: dict[str, float] | None = None, bounds: dict[str, tuple[float, float]] | None = None) FitResult [source]#
Perform fit and return results.
Parameters: - x_data: X values for fitting - y_data: Y values for fitting - initial_guess: Initial parameter guesses - bounds: Parameter bounds (min, max) for each parameter
Returns: - FitResult object with fit parameters and quality metrics
- class mdaviz.fit_models.FitResult(parameters: dict[str, float], uncertainties: dict[str, float], r_squared: float, chi_squared: float, reduced_chi_squared: float, fit_curve: numpy.ndarray, x_fit: numpy.ndarray)[source]#
Container for fit results.
- class mdaviz.fit_models.GaussianFit[source]#
Gaussian fit model.
- _gaussian_function(x: numpy.ndarray, amplitude: float, center: float, sigma: float, offset: float) numpy.ndarray [source]#
Gaussian function.
Parameters: - x: X values - amplitude: Peak amplitude - center: Center position - sigma: Standard deviation - offset: Vertical offset
Returns: - Y values of Gaussian function
- class mdaviz.fit_models.LinearFit[source]#
Linear fit model.
- class mdaviz.fit_models.LorentzianFit[source]#
Lorentzian fit model.
- _get_default_initial_guess(x_data: numpy.ndarray, y_data: numpy.ndarray) dict[str, float] [source]#
Get default initial guesses for Lorentzian fit.
- _lorentzian_function(x: numpy.ndarray, amplitude: float, center: float, gamma: float, offset: float) numpy.ndarray [source]#
Lorentzian function.
Parameters: - x: X values - amplitude: Peak amplitude - center: Center position - gamma: Half-width at half-maximum - offset: Vertical offset
Returns: - Y values of Lorentzian function