Utilities#
Assists measurement, data exploration, and the user experience.
Also consult the Index under the apstools heading for links to the Exceptions, and Utilities described here.
Utilities by Activity#
APS Data Management#
|
Name the APS Data Management bash script that activates its conda environment. |
Return the APS Data Management Catalog API object. |
|
Return the APS Data Management Data Acquisition API object. |
|
Return the APS Data Management Dataset Metadata Catalog API object. |
|
Return the APS Data Management Data Storage API object. |
|
Return the APS Data Management File API object. |
|
Return the APS Data Management Metadata Catalog Service API object. |
|
Return the APS Data Management Processing API object. |
|
Keep track of one or more APS Data Management workflows for bluesky plans. |
Finding#
|
Find the ophyd (dotted name) object associated with the given ophyd name. |
|
Find all ophyd objects associated with the given EPICS PV. |
Return a dictionary of databroker catalogs in the default namespace. |
Listing#
|
Describe the signal information from device |
|
Show all the ophyd Signal and Device objects defined as globals. |
|
List all plans. |
|
Convenience function to list all keys (column names) in the scan's stream (default: primary). |
|
List the runs from the given catalog according to some options. |
|
List runs from catalog. |
Reporting#
|
custom print the RunEngine metadata in a table |
|
Record logging output to a file. |
Return a path to ./.logs. |
|
|
Record all input ( |
|
Record logging output to a stream (such as the console). |
|
Slit size and center as a named tuple |
Other Utilities#
|
Name the APS Data Management bash script that activates its conda environment. |
APS-U controls are on private subnets. |
|
|
convert text so it can be used as a dictionary key |
|
Given list of EPICS PV names, return dict of EpicsSignal objects. |
|
send email notifications when requested |
|
Get the first live plot that matches |
|
Get the MatPlotLib Figure window for y vs x. |
|
Find the plot(s) by name and replot with at most the last n lines. |
|
Find the plot with axes x and y and replot with at most the last n lines. |
String must not exceed EPICS PV length. |
|
|
Run a UNIX command, returns (stdout, stderr). |
|
Convert Python timestamp (float) to IS8601 time in current time zone. |
General#
Get the names of all function parameters supplied by the caller. |
|
|
convert text so it can be used as a dictionary key |
|
format a command list as a pyRestTable.Table object |
|
Given list of EPICS PV names, return dict of EpicsSignal objects. |
|
copy filtered runs from source_cat to target_cat |
|
Searches the databroker v2 database. |
|
Return a text table from |
|
send email notifications when requested |
|
base class: read-only support for Excel files, treat them like databases |
|
Generic (read-only) handling of Excel spreadsheet-as-database |
|
Exception when reading Excel spreadsheet. |
|
Find the ophyd (dotted name) object associated with the given ophyd name. |
|
Find all ophyd objects associated with the given EPICS PV. |
Return a dictionary of databroker catalogs in the default namespace. |
|
|
Return the full dotted name |
|
Return a catalog object. |
|
Return Bluesky database using keyword guides or default choice. |
Return the default databroker catalog. |
|
Find the "default" database (has the most recent run). |
|
|
get the IPython shell's namespace dictionary (or globals() if not found) |
|
Convenience function to get the run's data. |
|
Convenience function to get value of key in run stream. |
|
Get values from a previous scan stream in a databroker catalog. |
return the name of the current ipython profile or |
|
|
Format a list of items. |
|
Describe the signal information from device |
|
Show all the ophyd Signal and Device objects defined as globals. |
|
List all plans. |
|
Convenience function to list all keys (column names) in the scan's stream (default: primary). |
|
List the runs from the given catalog according to some options. |
|
List runs from catalog. |
Define parameters that can be overridden from a user configuration file. |
|
|
break a list (or other iterable) into pairs |
|
Plot y vs x from a bluesky run. |
|
custom print the RunEngine metadata in a table |
|
Print table of different |
|
Set EPICS motor record's user coordinate to |
|
Round-off floating-point numbers to sig_figs. |
|
Replay the document stream from one (or more) scans (headers). |
|
return memory used by this process |
|
(decorator) run |
|
make text safe to be used as an ophyd object name |
|
Get the first live plot that matches |
|
Get the MatPlotLib Figure window for y vs x. |
|
splits a line into words some of which might be quoted |
|
Report bluesky run metrics from the databroker. |
|
Encode |
|
|
|
Find the plot(s) by name and replot with at most the last n lines. |
|
Find the plot with axes x and y and replot with at most the last n lines. |
String must not exceed EPICS PV length. |
|
|
Run a UNIX command, returns (stdout, stderr). |
Submodules#
Setup for for this beam line’s APS Data Management Python API client.
FIRST
The dm_setup(setup_file)
function must be called first,
before any other calls to the dm
package. The setup_file
argument is the bash script that activates the APS Data Management
conda environment for the workstation. That file contains definitions
of environment variables needed by the functions below.
|
Name the APS Data Management bash script that activates its conda environment. |
FUNCTIONS
|
Return a dictionary for use as Bluesky run metadata. |
|
Add APS Data Management workflow from file. |
Return the APS Data Management Catalog API object. |
|
Return the APS Data Management Data Acquisition API object. |
|
Return the APS Data Management Dataset Metadata Catalog API object. |
|
Return the APS Data Management Data Storage API object. |
|
Return the APS Data Management File API object. |
|
Return the APS Data Management Metadata Catalog Service API object. |
|
Return the APS Data Management Processing API object. |
|
|
plan: Wait for DAQ uploads to finish. |
|
Does DM determine the named file is ready for processing? |
|
Return list of APS Data Management DAQ(s) for this experiment. |
Return the daqInfo dict for the active DAQ, or 'None'. |
|
|
Get experiment file. |
|
Return the storageDirectory for the named APS Data Management experiment as a path. |
|
Get the most recent APS Data Management experiments (for the current station). |
|
Get named APS Data Management workflow. |
Add APS Data Management environment variable definitions to this process. |
|
|
Start APS DM data acquisition (real-time directory monitoring and file upload). |
Return the APS Data Management station name or |
|
|
Stop APS DM data acquisition (real-time directory monitoring and file upload). |
|
Update APS Data Management workflow from file. |
|
Start APS DM data acquisition file upload. |
|
Return the name of the last stage in the named APS Data Management workflow. |
|
Once a bluesky run ends, share its metadata with APS DM. |
These bluesky plans use the experiment's 'dataDirectory'. |
|
|
(bluesky plan) Wait for APS DM data acquisition to upload a file. |
Keep track of one or more APS Data Management workflows for bluesky plans. |
- class apstools.utils.aps_data_management.DM_WorkflowCache[source]#
Bases:
object
Keep track of one or more APS Data Management workflows for bluesky plans.
define_workflow
(key, connector)Add a DM_WorkflowConnector object to be managed.
print_cache_summary
([title])Summarize (in a table) the DM workflows in the cache.
report_dm_workflow_output
(final_stage_id)Print a final (summary) report about a single DM workflow.
wait_workflows
([period, wait])(plan) Wait (if
True
) for existing workflows to finish.Update all the workflows in the cache (from the DM server).
- define_workflow(key: str, connector: object)[source]#
Add a DM_WorkflowConnector object to be managed.
PARAMETERS
- key str:
Identifying text for this workflow object.
- connector object:
Instance of DM_WorkflowConnector.
- print_cache_summary(title: str = 'Summary')[source]#
Summarize (in a table) the DM workflows in the cache.
- report_dm_workflow_output(final_stage_id: str)[source]#
Print a final (summary) report about a single DM workflow.
PARAMETERS
- final_stage_id str:
Text key of the last stage in the workflow.
- wait_workflows(period: float = 10, wait: bool = True)[source]#
(plan) Wait (if
True
) for existing workflows to finish.PARAMETERS
- period float:
Time between reports while waiting for all workflows to finish processing. Default: 10 seconds.
- wait bool:
Should RE wait for all workflows to finish? Default:
True
- apstools.utils.aps_data_management.build_run_metadata_dict(user_md: dict, **dm_kwargs) dict [source]#
Return a dictionary for use as Bluesky run metadata.
- apstools.utils.aps_data_management.dm_add_workflow(workflow_file)[source]#
Add APS Data Management workflow from file.
- apstools.utils.aps_data_management.dm_api_cat()[source]#
Return the APS Data Management Catalog API object.
- apstools.utils.aps_data_management.dm_api_daq()[source]#
Return the APS Data Management Data Acquisition API object.
- apstools.utils.aps_data_management.dm_api_dataset_cat()[source]#
Return the APS Data Management Dataset Metadata Catalog API object.
- apstools.utils.aps_data_management.dm_api_ds()[source]#
Return the APS Data Management Data Storage API object.
- apstools.utils.aps_data_management.dm_api_file()[source]#
Return the APS Data Management File API object.
- apstools.utils.aps_data_management.dm_api_filecat()[source]#
Return the APS Data Management Metadata Catalog Service API object.
- apstools.utils.aps_data_management.dm_api_proc()[source]#
Return the APS Data Management Processing API object.
- apstools.utils.aps_data_management.dm_daq_wait_upload_plan(id: str, period: float = 10)[source]#
plan: Wait for DAQ uploads to finish.
- apstools.utils.aps_data_management.dm_file_ready_to_process(experimentFilePath: str, experimentName: str, compression: str = '', retrieveMd5Sum: bool = False) bool [source]#
Does DM determine the named file is ready for processing?
- apstools.utils.aps_data_management.dm_get_daqs(experimentName: str)[source]#
Return list of APS Data Management DAQ(s) for this experiment.
PARAMETERS
- experimentName str:
Name of the APS Data Management experiment.
RETURNS
List of matching DAQ dictionaries.
- apstools.utils.aps_data_management.dm_get_experiment_datadir_active_daq(experiment_name: str, data_directory: str)[source]#
Return the daqInfo dict for the active DAQ, or ‘None’.
- apstools.utils.aps_data_management.dm_get_experiment_file(experiment_name: str, experiment_file: str)[source]#
Get experiment file.
PARAMETERS
- experiment_name str:
Name of the APS Data Management experiment. The experiment must exist.
- experiment_file str:
Name (with path) of the experiment file.
RETURNS
FileMetadata object.
RAISES
InvalidRequest – in case experiment name or file path have not been provided
AuthorizationError – in case user is not authorized to manage DM station
ObjectNotFound – in case file with a given path does not exist
DmException – in case of any other errors
- apstools.utils.aps_data_management.dm_get_experiment_path(experiment_name: str)[source]#
Return the storageDirectory for the named APS Data Management experiment as a path.
PARAMETERS
- experiment_name str:
Name of the APS Data Management experiment. The experiment must exist.
RETURNS
Data directory for the experiment, as pathlib.Path object.
RAISES
- dm.ObjectNotFound:
When experiment is not found.
- apstools.utils.aps_data_management.dm_get_experiments(keys=['id', 'name', 'startDate', 'experimentType', 'experimentStation'], table=False, default_value='-na-')[source]#
Get the most recent APS Data Management experiments (for the current station).
Return result as either a list or a pyRestTable object (see
table
).PARAMETERS:
- keys [str]:
Data keys to be shown in the table.
- table bool:
If
False
(default), return a Python list. IfTrue
, return a pyRestTableTable()
object.- default_value str:
Table value if no data available for that key.
- apstools.utils.aps_data_management.dm_get_workflow(workflow_name: str)[source]#
Get named APS Data Management workflow.
- apstools.utils.aps_data_management.dm_setup(setup_file)[source]#
Name the APS Data Management bash script that activates its conda environment.
The return result is the ‘owner’ of the DM workflows.
- apstools.utils.aps_data_management.dm_source_environ()[source]#
Add APS Data Management environment variable definitions to this process.
This function reads the bash script, searching for lines that start with “export “. Such lines define bash shell environment variables in the bash script. This function adds those environment variables to the current environment.
BASH COMMAND SUGGESTIONS:
source /home/dm/etc/dm.setup.sh source ~/DM/etc/dm.setup.sh
The suggestions follow a pattern:
${DM_ROOT}/etc/dm.setup.sh
whereDM_ROOT
is the location of the DM tools as installed in the current user account.
- apstools.utils.aps_data_management.dm_start_daq(experimentName: str, dataDirectory: str, **daqInfo)[source]#
Start APS DM data acquisition (real-time directory monitoring and file upload).
PARAMETERS
- experimentName str:
Name of the APS Data Management experiment.
- dataDirectory:
data directory URL
- daqInfo dict:
Dictionary of optional metadata (key/value pairs) describing data acquisition. See https://git.aps.anl.gov/DM/dm-docs/-/wikis/DM/Beamline-Services/API-Reference/DAQ-Service#dm.daq_web_service.api.experimentDaqApi.ExperimentDaqApi.startDaq for details.
RETURNS
daqInfo dictionary
- apstools.utils.aps_data_management.dm_station_name()[source]#
Return the APS Data Management station name or
None
if not found.
- apstools.utils.aps_data_management.dm_stop_daq(experimentName: str, dataDirectory: str)[source]#
Stop APS DM data acquisition (real-time directory monitoring and file upload).
PARAMETERS
- experimentName str:
Name of the APS Data Management experiment.
- dataDirectory:
data directory URL
- apstools.utils.aps_data_management.dm_update_workflow(workflow_file)[source]#
Update APS Data Management workflow from file.
- apstools.utils.aps_data_management.dm_upload(experimentName: str, dataDirectory: str, **daqInfo)[source]#
Start APS DM data acquisition file upload.
PARAMETERS
- experimentName str:
Name of the APS Data Management experiment.
- dataDirectory:
data directory URL
- daqInfo dict:
Dictionary of optional metadata (key/value pairs) describing data acquisition. See https://git.aps.anl.gov/DM/dm-docs/-/wikis/DM/Beamline-Services/API-Reference/DAQ-Service#dm.daq_web_service.api.experimentDaqApi.ExperimentDaqApi.startDaq for details.
See also
The
wait_dm_upload()
function in this module.
- apstools.utils.aps_data_management.get_workflow_last_stage(workflow_name)[source]#
Return the name of the last stage in the named APS Data Management workflow.
Once a bluesky run ends, share its metadata with APS DM.
Only upload if we have a workflow.
- apstools.utils.aps_data_management.validate_experiment_dataDirectory(dm_experiment_name: str)[source]#
These bluesky plans use the experiment’s ‘dataDirectory’.
- apstools.utils.aps_data_management.wait_dm_upload(experiment_name: str, experiment_file: str, timeout: float = 600, poll_period: float = 30)[source]#
(bluesky plan) Wait for APS DM data acquisition to upload a file.
PARAMETERS
experiment_name str: Name of the APS Data Management experiment.
experiment_file str Name (and path) of file in DM.
timeout float: Number of seconds to wait before raising a ‘TimeoutError’.
poll_period float: Number of seconds to wait before check DM again.
RAISES
TimeoutError: if DM does not identify file within ‘timeout’ (seconds).
APS-U controls are on private subnets. Check and advise as applicable.
APS-U controls are on private subnets. |
- apstools.utils.apsu_controls_subnet.warn_if_not_aps_controls_subnet()[source]#
APS-U controls are on private subnets. Check and advise as applicable.
Call this function early in the startup procedure. It could explain easily the reason for subsequent EPICS PV connection failures.
For workstations on subnets that do not match the criteria, this function should not post any warnings.
Working with databroker catalogs#
|
copy filtered runs from source_cat to target_cat |
Return a dictionary of databroker catalogs in the default namespace. |
|
|
Return a catalog object. |
|
Return Bluesky database using keyword guides or default choice. |
Return the default databroker catalog. |
|
Find the "default" database (has the most recent run). |
|
|
Get values from a previous scan stream in a databroker catalog. |
|
Print table of different |
- apstools.utils.catalog.copy_filtered_catalog(source_cat, target_cat, query=None)[source]#
copy filtered runs from source_cat to target_cat
PARAMETERS
- source_cat
obj : instance of databroker.Broker or databroker.catalog[name]
- target_cat
obj : instance of databroker.Broker or databroker.catalog[name]
- query
dict : mongo query dictionary, used to filter the results (default:
{}
)see: https://docs.mongodb.com/manual/reference/operator/query/
example:
copy_filtered_catalog( databroker.Broker.named("mongodb_config"), databroker.catalog["test1"], {'plan_name': 'snapshot'})
- apstools.utils.catalog.findCatalogsInNamespace()[source]#
Return a dictionary of databroker catalogs in the default namespace.
- apstools.utils.catalog.getDatabase(db=None, catalog_name=None)[source]#
Return Bluesky database using keyword guides or default choice.
PARAMETERS
- db
object : Bluesky database, an instance of
databroker.catalog
(default: seecatalog_name
keyword argument)- catalog_name
str : Name of databroker v2 catalog, used when supplied
db
isNone
. (default: catalog with most recent run timestamp)
RETURNS
- object or
None
: Bluesky database, an instance of
databroker.catalog
(new in release 1.4.0)
- apstools.utils.catalog.getDefaultDatabase()[source]#
Find the “default” database (has the most recent run).
Note that here, database and catalog mean the same.
This routine looks at all the database instances defined in the current session (console or notebook). If there is only one or no database instances defined as objects in the current session, the choice is simple. When there is more than one database instance in the current session, then the one with the most recent run timestamp is selected. In the case (as happens when starting with a new database) that the current database has no runs and another database instance is defined in the session and that additional database has runs in it (such as the previous database), then the database with the newest run timestamp (and not the newer empty database) will be chosen.
RETURNS
- object or
None
: Bluesky database, an instance of
databroker.catalog
(new in release 1.4.0)
- object or
- apstools.utils.catalog.getStreamValues(scan_id, key_fragment='', db=None, stream='baseline', query=None, use_v1=True)[source]#
Get values from a previous scan stream in a databroker catalog.
Optionally, select only those data with names including
key_fragment
.Tip
If the output is truncated, use
pd.set_option('display.max_rows', 300)
to increase the number of rows displayed.PARAMETERS
- scan_id
int or str : Scan (run) identifier. Positive integer value is
scan_id
from run’s metadata. Negative integer value is since most recent run in databroker. String is run’suid
unique identifier (can abbreviate to the first characters needed to assure it is unique).- key_fragment
str : Part or all of key name to be found in selected stream. For instance, if you specify
key_fragment="lakeshore"
, it will return all the keys that includelakeshore
.- db
object : Bluesky database, an instance of
databroker.catalog
. Default: will search existing session for instance.- stream
str : Name of the bluesky data stream to obtain the data. Default: ‘baseline’
- query
dict : mongo query dictionary, used to filter the results Default:
{}
see: https://docs.mongodb.com/manual/reference/operator/query/
- use_v1
bool : Chooses databroker API version between ‘v1’ or ‘v2’. Default:
True
(meaning use the v1 API)
RETURNS
- object :
pandas DataFrame with values from selected stream, search_string, and query
see: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
(new in apstools 1.5.1)
- apstools.utils.catalog.quantify_md_key_use(key=None, db=None, catalog_name=None, since=None, until=None, query=None)[source]#
Print table of different
key
values and how many times each appears.PARAMETERS
- key str :
one of the metadata keys in a run’s start document (default:
plan_name
)- db object :
Instance of databroker v1
Broker
or v2catalog
(default: seecatalog_name
keyword argument)- catalog_name str :
Name of databroker v2 catalog, used when supplied
db
isNone
. (default:mongodb_config
)- since str :
include runs that started on or after this ISO8601 time (default:
1995-01-01
)- until str :
include runs that started before this ISO8601 time (default:
2100-12-31
)- query dict :
mongo query dictionary, used to filter the results (default:
{}
)see: https://docs.mongodb.com/manual/reference/operator/query/
EXAMPLES:
quantify_md_key_use(key="proposal_id") quantify_md_key_use(key="plan_name", catalog_name="9idc", since="2020-07") quantify_md_key_use(key="beamline_id", catalog_name="9idc") quantify_md_key_use(key="beamline_id", catalog_name="9idc", query={'plan_name': 'Flyscan'}, since="2020", until="2020-06-21 21:51") quantify_md_key_use(catalog_name="8id", since="2020-01", until="2020-03") In [8]: quantify_md_key_use(catalog_name="apstools_test") ========= ===== plan_name #runs ========= ===== count 26 scan 27 ========= ===== In [9]: quantify_md_key_use(catalog_name="usaxs_test") ========================== ===== plan_name #runs ========================== ===== Flyscan 1 TuneAxis.tune 1 count 1 measure_USAXS_Transmission 1 run_Excel_file 1 snapshot 1 tune_a2rp 1 tune_ar 1 tune_m2rp 1 tune_mr 1 ========================== =====
Device information#
|
Describe the signal information from device |
- apstools.utils.device_info.listdevice(obj, scope=None, cname=False, dname=True, show_pv=False, use_datetime=True, show_ancient=True, max_column_width=None, table_style=TableStyle.pyRestTable, _call_args=None)[source]#
Describe the signal information from device
obj
in a pandas DataFrame.Look through all subcomponents to find all the signals to be shown. Components that are disconnected will be skipped and a warning logged.
EXAMPLE:
>>> listdevice(m1) ======================= ======= ========================== data name value timestamp ======================= ======= ========================== m1 0.0 2024-08-28 09:41:08.364137 m1_user_setpoint 0.0 2024-08-28 09:41:08.364137 m1_user_offset 0.0 2024-08-28 11:46:56.116048 m1_user_offset_dir 0 2024-08-28 09:41:08.364137 m1_offset_freeze_switch 0 2024-08-28 09:41:08.364137 m1_set_use_switch 0 2024-08-28 09:41:08.364137 m1_velocity 1.0 2024-08-28 09:41:08.364137 m1_acceleration 0.2 2024-08-28 09:41:08.364137 m1_motor_egu degrees 2024-08-28 09:41:08.364137 m1_motor_is_moving 0 2024-08-28 09:41:08.364137 m1_motor_done_move 1 2024-08-28 11:46:56.116057 m1_high_limit_switch 0 2024-08-28 09:41:08.364137 m1_low_limit_switch 0 2024-08-28 09:41:08.364137 m1_high_limit_travel 1000.0 2024-08-28 11:46:56.116048 m1_low_limit_travel -1000.0 2024-08-28 11:46:56.116048 m1_direction_of_travel 0 2024-08-28 09:41:08.364137 m1_motor_stop 0 2024-08-28 09:41:08.364137 m1_home_forward 0 2024-08-28 09:41:08.364137 m1_home_reverse 0 2024-08-28 09:41:08.364137 m1_steps_per_revolution 2000 2024-08-28 09:41:08.364137 ======================= ======= ==========================
PARAMETERS
- obj
object : Instance of ophyd Signal or Device.
- scope
str or None : Scope of content to be shown.
"full"
(orNone
) shows all Signal components"epics"
shows only EPICS-based Signals"read"
shows only the signals returned byobj.read()
default:
None
- cname
bool : Show the _control_ (Python, dotted) name in column
name
.default:
False
- dname
bool : Show the _data_ (databroker, with underlines) name in column
data name
.default:
True
- show_pv
bool : Show the EPICS process variable (PV) name in column
PV
.default:
False
Note
Special case when
show_pv=True
: Ifcname
is not provided, it will be setTrue
. Ifdname
is not provided, it will be setFalse
.- use_datetime bool :
Show the EPICS timestamp (time of last update) in column
timestamp
.default:
True
- show_ancient bool :
Show uninitialized EPICS process variables.
In EPICS, an uninitialized PV has a timestamp of 1990-01-01 UTC. This option enables or suppresses ancient values identified by timestamp from 1989. These are values only defined in the original
.db
file.default:
True
- max_column_width int or None :
Truncate long columns to no more than this length. If not default, then table will be formatted using pyRestTable.
default:
None
(will use50
)- table_style object :
Either
apstools.utils.TableStyle.pandas
(default) or using values fromapstools.utils.TableStyle
.Note
pandas.DataFrame
wll truncate long text to at most 50 characters.
See also
listdevice()
in What are the objects to control?
email Support#
|
send email notifications when requested |
- class apstools.utils.email.EmailNotifications(sender=None)[source]#
send email notifications when requested
use default OS mail utility (so no credentials needed)
EXAMPLE
Send email(s) when feedback_limits_approached (a hypothetical boolean) is True:
# setup from apstools.utils import EmailNotifications SENDER_EMAIL = "instrument_user@email.host.tld" email_notices = EmailNotifications(SENDER_EMAIL) email_notices.add_addresses( # This list receives email when send() is called. "joe.user@goodmail.com", "instrument_team@email.host.tld", # others? ) # ... later if feedback_limits_approached: # send emails to list subject = "Feedback problem" message = "Feedback is very close to its limits." email_notices.send(subject, message)
Statistical peak analysis functions#
Uses pysumreg package (https://prjemian.github.io/pysumreg/) to obtain summary statistics.
|
Measures of 1D data peak center & width. |
|
Analyze 2-D (image) data. |
- apstools.utils.image_analysis.analyze_1D(y_arr, x_arr=None)[source]#
Measures of 1D data peak center & width.
Return result is a dictionary prepared by the
to_dict(use_registers=True)
method of thepysumreg.SummationRegisters()
class.Example:
{'mean_x': 2.0, 'mean_y': 7.2, 'stddev_x': 1.5811388300841898, 'stddev_y': 3.3466401061363027, 'slope': 0.0, 'intercept': 7.2, 'correlation': 0.0, 'centroid': 2.0, 'sigma': 1.1547005383792515, 'min_x': 1, 'max_x': 4, 'min_y': 4, 'max_y': 12, 'x_at_max_y': 2, 'n': 5, 'X': 10, 'Y': 36, 'XX': 30, 'XY': 72, 'XXY': 192, 'YY': 304}
- apstools.utils.image_analysis.analyze_2D(image)[source]#
Analyze 2-D (image) data.
Return result is a dictionary with the statistical results for a peak analysis, grouped in pairs (row, column) as it makes sense given
frame[rows][columns]
. The \(x\) values are the index number along the respective axis.For this image data:
[ [0, 1, 2, 1, 0], [1, 2, 3, 2, 1], [2, 3, 4, 10, 2], [1, 2, 3, 2, 1], ]
This is the analysis:
{'n': (5, 4), 'centroid': (2.1628, 1.814), 'sigma': (1.1192, 0.8695), 'peak_position': (3, 2), 'max_y': 10}
Directory of the known plans#
|
List all plans. |
- apstools.utils.list_plans.listplans(base=None, trunc=50, table_style=TableStyle.pyRestTable)[source]#
List all plans. (Actually, lists all generator functions).
NOTE: Can only detect generator functions. Bluesky plans are generator functions that generate
bluesky.Msg
objects. There is a PR to define a decorator that identifies a generator function as a bluesky plan.PARAMETERS
- base object or None :
Object that contains plan methods (if
None
, use global namespace.) (default:None
)- trunc int :
Truncate long docstrings to no more than
trunc
characters. (default: 50)- table_style object :
Either
TableStyle.pyRestTable
(default) orTableStyle.pandas
, using values fromapstools.utils.TableStyle
.Note
pandas.DataFrame
wll truncate long text to at most 50 characters.
Directory of bluesky runs#
|
Convenience function to get the run's data. |
|
Convenience function to get value of key in run stream. |
|
Convenience function to list all keys (column names) in the scan's stream (default: primary). |
|
List the runs from the given catalog according to some options. |
|
List runs from catalog. |
|
Report bluesky run metrics from the databroker. |
- class apstools.utils.list_runs.ListRuns(cat: object = None, query: object = None, keys: object = None, missing: str = '', num: int = 20, reverse: bool = True, since: object = None, sortby: str = 'time', timefmt: str = '%Y-%m-%d %H:%M:%S', until: object = None, ids: Any = None, hints_override: bool = False)[source]#
List the runs from the given catalog according to some options.
EXAMPLE:
ListRuns(cat).to_dataframe()
PUBLIC METHODS
Output as pandas DataFrame object
to_table
([fmt])Output as pyRestTable object.
Parse the runs for the given metadata keys.
INTERNAL METHODS
_get_by_key
(md, key)Get run's metadata value by key.
_check_cat
()_apply_search_filters
()Search for runs from the catalog.
_check_keys
()Check that self.keys is a list of strings.
- apstools.utils.list_runs.getRunData(scan_id, db=None, stream='primary', query=None, use_v1=True)[source]#
Convenience function to get the run’s data. Default is the
primary
stream.PARAMETERS
- scan_id
int or str : Scan (run) identifier. Positive integer value is
scan_id
from run’s metadata. Negative integer value is since most recent run in databroker. String is run’suid
unique identifier (can abbreviate to the first characters needed to assure it is unique).- db
object : Bluesky database, an instance of
databroker.catalog
. Default: will search existing session for instance.- stream
str : Name of the bluesky data stream to obtain the data. Default: ‘primary’
- query
dict : mongo query dictionary, used to filter the results Default:
{}
see: https://docs.mongodb.com/manual/reference/operator/query/
- use_v1
bool : Chooses databroker API version between ‘v1’ or ‘v2’. Default:
True
(meaning use the v1 API)
(new in apstools 1.5.1)
- apstools.utils.list_runs.getRunDataValue(scan_id, key, db=None, stream='primary', query=None, idx=-1, use_v1=True)[source]#
Convenience function to get value of key in run stream.
Defaults are last value of key in primary stream.
PARAMETERS
- scan_id
int or str : Scan (run) identifier. Positive integer value is
scan_id
from run’s metadata. Negative integer value is since most recent run in databroker. String is run’suid
unique identifier (can abbreviate to the first characters needed to assure it is unique).- key
str : Name of the key (data column) in the table of the stream’s data. Must match identically.
- db
object : Bluesky database, an instance of
databroker.catalog
. Default: will search existing session for instance.- stream
str : Name of the bluesky data stream to obtain the data. Default: ‘primary’
- query
dict : mongo query dictionary, used to filter the results Default:
{}
see: https://docs.mongodb.com/manual/reference/operator/query/
- idx
int or str : List index of value to be returned from column of table. Can be
0
for first value,-1
for last value,"mean"
for average value, or"all"
for the full list of values. Default:-1
- use_v1
bool : Chooses databroker API version between ‘v1’ or ‘v2’. Default:
True
(meaning use the v1 API)
(new in apstools 1.5.1)
- apstools.utils.list_runs.listRunKeys(scan_id, key_fragment='', db=None, stream='primary', query=None, strict=False, use_v1=True)[source]#
Convenience function to list all keys (column names) in the scan’s stream (default: primary).
PARAMETERS
- scan_id
int or str : Scan (run) identifier. Positive integer value is
scan_id
from run’s metadata. Negative integer value is since most recent run in databroker. String is run’suid
unique identifier (can abbreviate to the first characters needed to assure it is unique).- key_fragment
str : Part or all of key name to be found in selected stream. For instance, if you specify
key_fragment="lakeshore"
, it will return all the keys that includelakeshore
.- db
object : Bluesky database, an instance of
databroker.catalog
. Default: will search existing session for instance.- stream
str : Name of the bluesky data stream to obtain the data. Default: ‘primary’
- query
dict : mongo query dictionary, used to filter the results Default:
{}
see: https://docs.mongodb.com/manual/reference/operator/query/
- strict
bool : Should the
key_fragment
be matched identically (strict=True
) or matched by lower case comparison (strict=False
)? Default:False
- use_v1
bool : Chooses databroker API version between ‘v1’ or ‘v2’. Default:
True
(meaning use the v1 API)
(new in apstools 1.5.1)
- apstools.utils.list_runs.listruns(cat=None, keys=None, missing='', num=20, printing=None, reverse=True, since=None, sortby='time', tablefmt=None, table_style=TableStyle.pyRestTable, timefmt='%Y-%m-%d %H:%M:%S', until=None, ids=None, hints_override=False, **query)[source]#
List runs from catalog.
This function provides a thin interface to the highly-reconfigurable
ListRuns()
class in this package.PARAMETERS
- cat
object : Instance of databroker v1 or v2 catalog.
- keys
str or [str] or None: Include these additional keys from the start document. (default:
None
means"scan_id time plan_name detectors"
)- missing
str: Test to report when a value is not available. (default:
""
)- hints_override bool:
For a key that appears in both the metadata and the hints, override the metadata value if the same key is found in the hints. (default:
False
)- ids
[int] or [str]: List of
uid
orscan_id
value(s). Can mix different kinds in the same list. Also can specify offsets (e.g.,-1
). According to the rules fordatabroker
catalogs, a string is auid
(partial representations allowed), an int isscan_id
if positive or an offset if negative. (default:None
)- num
int : Make the table include the
num
most recent runs. (default:20
)- printing bool or str :
Deprecated.
- reverse
bool : If
True
, sort in descending order bysortby
. (default:True
)- since
str : include runs that started on or after this ISO8601 time (default:
"1995-01-01"
)- sortby
str : Sort columns by this key, found by exact match in either the
start
orstop
document. (default:"time"
)- tablefmt str :
Deprecated. Use
table_style
instead.- table_style object :
Either
TableStyle.pyRestTable
(default) orTableStyle.pandas
, using values fromapstools.utils.TableStyle
.Note
pandas.DataFrame
wll truncate long text to at most 50 characters.- timefmt
str : The
time
key (also includes keys"start.time"
and"stop.time"
) will be formatted by theself.timefmt
value. See https://strftime.org/ for examples. The specialtimefmt="raw"
is used to report time as the raw value (floating point time as used in python’stime.time()
). (default:"%Y-%m-%d %H:%M:%S",
)- until
str : include runs that started before this ISO8601 time (default:
2100-12-31
)**query
dict : Any additional keyword arguments will be passed to the databroker to refine the search for matching runs using the
mongoquery
package.
RETURNS
- object:
None
orstr
orpd.DataFrame()
object
EXAMPLE:
TODO
(new in release 1.5.0)
- apstools.utils.list_runs.summarize_runs(since=None, db=None)[source]#
Report bluesky run metrics from the databroker.
How many different plans?
How many runs?
How many times each run was used?
How frequently? (TODO:)
PARAMETERS
- since
str : Report all runs since this ISO8601 date & time (default:
1995
)- db
object : Instance of
databroker.Broker()
(default:db
from the IPython shell)
Support for logging#
There is a guide describing How to setup logging.
|
Record logging output to a file. |
Return a path to ./.logs. |
|
|
Record all input ( |
|
Record logging output to a stream (such as the console). |
- apstools.utils.log_utils.file_log_handler(file_name_base, maxBytes=0, backupCount=0, log_path=None, level=None)[source]#
Record logging output to a file.
PARAMETERS
- file_name_basestr
Part of the name to store the log file. Full name is
f"<log_path>/{file_name_base}.log"
in present working directory.- log_pathstr
Part of the name to store the log file. Full name is
f"<log_path>/{file_name_base}.log"
in present working directory. default: (the present working directory)/LOG_DIR_BASE- levelint
Threshold for reporting messages with this logger. Logging messages which are less severe than
level
will be ignored. default: 10 (logging.DEBUG
orDEBUG
) see: https://docs.python.org/3/library/logging.html#levels- maxBytes(optional) int
Log file rollover begins whenever the current log file is nearly maxBytes in length. A new file is written when the current line will push the current file beyond this limit. default: 0
- backupCount(optional) int
When backupCount is non-zero, the system will keep up to backupCount numbered log files (with added extensions .1, ‘.2`, …). The current log file always has no numbered extension. The previous log file is the one with the lowest extension number. default: 0
Note
When either
maxBytes
orbackupCount
are zero, log file rollover never occurs, so you generally want to setbackupCount
to at least 1, and have a non-zeromaxBytes
.
- apstools.utils.log_utils.get_log_path()[source]#
Return a path to ./.logs. Create directory if it does not exist.
- apstools.utils.log_utils.setup_IPython_console_logging(logger=None, filename='ipython_console.log', log_path=None)[source]#
Record all input (
In
) and output (Out
) from IPython console.PARAMETERS
- logger
object: Instance of
logging.Logger
.- filename
str: Name of the log file. (default:
ipython_console.log
)- log_pathstr
Directory to store the log file. Full name is
f"<log_path>/{file_name_base}.log"
. default: (the present working directory)/LOG_DIR_BASE
- apstools.utils.log_utils.stream_log_handler(formatter=None, level='INFO')[source]#
Record logging output to a stream (such as the console).
PARAMETERS
- formatter
object: Instance of
logging.Formatter
.- level
str: Name of the logging level to report. (default:
INFO
)
Diagnostic Support for Memory#
|
return memory used by this process |
Miscellaneous Support#
Get the names of all function parameters supplied by the caller. |
|
|
convert text so it can be used as a dictionary key |
|
Given list of EPICS PV names, return dict of EpicsSignal objects. |
|
Dict with number of children of this device. |
|
Count how many subdirectories are common to both file paths. |
|
Return a text table from |
|
Return the full dotted name |
|
Format a list of items. |
|
Show all the ophyd Signal and Device objects defined as globals. |
|
break a list (or other iterable) into pairs |
|
custom print the RunEngine metadata in a table |
|
Set EPICS motor record's user coordinate to |
|
Round-off floating-point numbers to sig_figs. |
|
Replay the document stream from one (or more) scans (headers). |
|
(decorator) run |
|
make text safe to be used as an ophyd object name |
|
splits a line into words some of which might be quoted |
|
Encode |
|
|
String must not exceed EPICS PV length. |
|
|
Run a UNIX command, returns (stdout, stderr). |
- apstools.utils.misc.call_signature_decorator(f)[source]#
Get the names of all function parameters supplied by the caller.
This is used to differentiate user-supplied parameters from as-defined parameters with the same value.
HOW TO USE THIS DECORATOR:
Decorate a function or method with this decorator and add an additional _call_args=None kwarg to the function. The function can test _call_args if a specific kwarg was supplied by the caller.
EXAMPLE:
@call_signature_decorator def func1(a, b=1, c=True, _call_args=None): if 'c' in _call_args: # Caller supplied this kwarg? pass
Note
With
call_signature_decorator
, it is not possible to get the names of the positional arguments. Since positional parameters are not specified by name, such capability is not expected to become a requirement.- See:
https://stackoverflow.com/questions/14749328#58166804 (how-to-check-whether-optional-function-parameter-is-set)
- apstools.utils.misc.cleanupText(text)[source]#
convert text so it can be used as a dictionary key
Given some input text string, return a clean version remove troublesome characters, perhaps other cleanup as well. This is best done with regular expression pattern matching.
- apstools.utils.misc.connect_pvlist(pvlist, wait=True, timeout=2, poll_interval=0.1)[source]#
Given list of EPICS PV names, return dict of EpicsSignal objects.
PARAMETERS
- pvlist
[str] : list of EPICS PV names
- wait
bool : should wait for EpicsSignal objects to connect (default:
True
)- timeout
float : maximum time to wait for PV connections, seconds (default: 2.0)
- poll_interval
float : time to sleep between checks for PV connections, seconds (default: 0.1)
- apstools.utils.misc.count_child_devices_and_signals(device)[source]#
Dict with number of children of this device. Keys: Device and Signal.
- apstools.utils.misc.count_common_subdirs(p1, p2)[source]#
Count how many subdirectories are common to both file paths.
- apstools.utils.misc.dictionary_table(dictionary, **kwargs)[source]#
Return a text table from
dictionary
.Dictionary keys in first column, values in second.
PARAMETERS
- dictionary
dict : Python dictionary
Note: Keyword arguments parameters are kept for compatibility with previous versions of apstools. They are ignored now.
RETURNS
- table
object or
None
:pyRestTable.Table()
object (multiline text table) orNone
if dictionary has no contents
EXAMPLE:
In [8]: RE.md Out[8]: {'login_id': 'jemian:wow.aps.anl.gov', 'beamline_id': 'developer', 'proposal_id': None, 'pid': 19072, 'scan_id': 10, 'version': {'bluesky': '1.5.2', 'ophyd': '1.3.3', 'apstools': '1.1.5', 'epics': '3.3.3'}} In [9]: print(dictionary_table(RE.md)) =========== ============================================================================= key value =========== ============================================================================= beamline_id developer login_id jemian:wow.aps.anl.gov pid 19072 proposal_id None scan_id 10 version {'bluesky': '1.5.2', 'ophyd': '1.3.3', 'apstools': '1.1.5', 'epics': '3.3.3'} =========== =============================================================================
- apstools.utils.misc.full_dotted_name(obj)[source]#
Return the full dotted name
The
.dotted_name
property does not include the name of the root object. This routine adds that.see: bluesky/ophyd#797
- apstools.utils.misc.listobjects(show_pv=True, printing=None, verbose=False, symbols=None, child_devices=False, child_signals=False, table_style=TableStyle.pyRestTable)[source]#
Show all the ophyd Signal and Device objects defined as globals.
PARAMETERS
- show_pv
bool : If True, also show relevant EPICS PV, if available. (default: True)
- printing bool :
Deprecated.
- verbose
bool : If True, also show
str(obj
. (default: False)- symbols
dict : If None, use global symbol table. If not None, use provided dictionary. (default:
globals()
)- child_devices
bool : If True, also show how many Devices are children of this device. (default: False)
- child_signals
bool : If True, also show how many Signals are children of this device. (default: False)
- table_style object :
Either
apstools.utils.TableStyle.pandas
(default) or using values fromapstools.utils.TableStyle
.Note
pandas.DataFrame
wll truncate long text to at most 50 characters.
RETURNS
- object:
Instance of
pyRestTable.Table()
EXAMPLE:
In [1]: listobjects() ======== ================================ ============= name ophyd structure EPICS PV ======== ================================ ============= adsimdet MySingleTriggerSimDetector vm7SIM1: m1 EpicsMotor vm7:m1 m2 EpicsMotor vm7:m2 m3 EpicsMotor vm7:m3 m4 EpicsMotor vm7:m4 m5 EpicsMotor vm7:m5 m6 EpicsMotor vm7:m6 m7 EpicsMotor vm7:m7 m8 EpicsMotor vm7:m8 noisy EpicsSignalRO vm7:userCalc1 scaler ScalerCH vm7:scaler1 shutter SimulatedApsPssShutterWithStatus ======== ================================ ============= Out[1]: <pyRestTable.rest_table.Table at 0x7fa4398c7cf8> In [2]:
(new in apstools release 1.1.8)
- apstools.utils.misc.pairwise(iterable)[source]#
break a list (or other iterable) into pairs
s -> (s0, s1), (s2, s3), (s4, s5), ... In [71]: for item in pairwise("a b c d e fg".split()): ...: print(item) ...: ('a', 'b') ('c', 'd') ('e', 'fg')
- apstools.utils.misc.print_RE_md(dictionary=None, fmt='simple', printing=True)[source]#
custom print the RunEngine metadata in a table
PARAMETERS
- dictionary
dict : Python dictionary
EXAMPLE:
In [4]: print_RE_md() RunEngine metadata dictionary: ======================== =================================== key value ======================== =================================== EPICS_CA_MAX_ARRAY_BYTES 1280000 EPICS_HOST_ARCH linux-x86_64 beamline_id APS USAXS 9-ID-C login_id usaxs:usaxscontrol.xray.aps.anl.gov pid 67933 proposal_id testing Bluesky installation scan_id 0 versions ======== ===== key value ======== ===== apstools 1.1.3 bluesky 1.5.2 epics 3.3.1 ophyd 1.3.3 ======== ===== ======================== ===================================
- apstools.utils.misc.redefine_motor_position(motor, new_position)[source]#
Set EPICS motor record’s user coordinate to
new_position
.
- apstools.utils.misc.render(value, sig_figs=12) str [source]#
Round-off floating-point numbers to sig_figs.
Such as:
0.369340000000000063 becomes 0.36934
-3.1300000000000003 becomes -3.13
-0 becomes 0
0.0 becomes 0
- apstools.utils.misc.replay(headers, callback=None, sort=True)[source]#
Replay the document stream from one (or more) scans (headers).
PARAMETERS
- headers
run or [run] : Run(s) to be replayed through callback. A run is an instance of a Bluesky
databroker.core.BlueskyRun
(or the olderdatabroker.Header
). see: https://nsls-ii.github.io/databroker/api.html?highlight=header#header-api- callback
run or [run] : The Bluesky callback to handle the stream of documents from a run. If
None
, then use the bec (BestEffortCallback) from the IPython shell. (default:None
)- sort
bool : Sort the headers chronologically if True. (default:
True
)
(new in apstools release 1.1.11)
- apstools.utils.misc.run_in_thread(func)[source]#
(decorator) run
func
in threadUSAGE:
@run_in_thread def progress_reporting(): logger.debug("progress_reporting is starting") # ... #... progress_reporting() # runs in separate thread #...
- apstools.utils.misc.safe_ophyd_name(text)[source]#
make text safe to be used as an ophyd object name
Given some input text string, return a clean version. Remove troublesome characters, perhaps other cleanup as well. This is best done with regular expression pattern matching.
The “sanitized” name fits this regular expression:
[A-Za-z_][\w_]*
Also can be used for safe HDF5 and NeXus names.
- apstools.utils.misc.split_quoted_line(line)[source]#
splits a line into words some of which might be quoted
TESTS:
FlyScan 0 0 0 blank FlyScan 5 2 0 "empty container" FlyScan 5 12 0 "even longer name" SAXS 0 0 0 blank SAXS 0 0 0 "blank"
RESULTS:
['FlyScan', '0', '0', '0', 'blank'] ['FlyScan', '5', '2', '0', 'empty container'] ['FlyScan', '5', '12', '0', 'even longer name'] ['SAXS', '0', '0', '0', 'blank'] ['SAXS', '0', '0', '0', 'blank']
- apstools.utils.misc.unix(command, raises=True)[source]#
Run a UNIX command, returns (stdout, stderr).
PARAMETERS
- command
str : UNIX command to be executed
- raises
bool : If
True
, will raise exceptions as needed, default:True
OverrideParameters#
Define parameters that can be overridden from a user configuration file.
EXAMPLE:
Create an overrides
object in a new file override_params.py
:
import apstools.utils
overrides = apstools.utils.OverrideParameters()
When code supports a parameter for which a user can provide
a local override, the code should import the overrides
object (from the override_params
module),
and then register the parameter name, such as this example:
from override_params import overrides
overrides.register("minimum_step")
Then later:
minstep = overrides.pick("minimum_step", 45e-6)
In the user’s configuration file that will override
the value of 45e-6
(such as can be loaded via
%run -i user.py
), import the overrides`
object (from the override_params
module):
from override_params import overrides
and then override the attribute(s) as desired:
overrides.set("minimum_step", 1.0e-5)
With this override in place, the minstep
value
(from pick()
)
will be 1e-5
.
Get a pandas DataFrame object with all the overrides:
overrides.summary()
which returns this table:
parameter value
0 minimum_step 0.00001
Define parameters that can be overridden from a user configuration file. |
- class apstools.utils.override_parameters.OverrideParameters[source]#
Define parameters that can be overridden from a user configuration file.
NOTE: This is a pure Python object, not using ophyd.
pick
(parameter, default)Return either the override parameter value if defined, or the default.
register
(parameter_name)Register a new parameter name to be supported by user overrides.
reset
(parameter_name)Remove an override value for a known parameter.
Remove override values for all known parameters.
set
(parameter_name, value)Define an override value for a known parameter.
summary
()Return a pandas DataFrame with all overrides.
(new in apstools 1.5.2)
- pick(parameter, default)[source]#
Return either the override parameter value if defined, or the default.
Plot Support#
|
Plot y vs x from a bluesky run. |
|
Get the MatPlotLib Figure window for y vs x. |
|
Get the first live plot that matches |
|
Find the plot with axes x and y and replot with at most the last n lines. |
|
Find the plot(s) by name and replot with at most the last n lines. |
- apstools.utils.plot.plotxy(runs, xname, yname, append=False, cat=None, stats=True, stream='primary', title=None)[source]#
Plot y vs x from a bluesky run.
Note: This is not a bluesky plan. Call it as a normal Python function.
PARAMETERS
runs
[run] or run:List or runs or single
run
. Arun
is either abluesky.core.BlueskyRun
object or a reference (uid, scan_id, relative to most recent) to a BlueskyRun in the catalog.xname
str:Name of the signal to plot on the x axis.
yname
str:Name of the signal to plot on the y axis.
append
bool:(optional) If
True
, append to existing plot window. Default:append=False
cat
object:(optional) Catalog to be used for finding a run by reference. Default: return value from
apstools.utils.getCatalog()
stats
bool:(optional) If
True
, compute and plot centroid and FWHM (computed from sigma). Default:stats=True
stream
str:(optional) Name of the data stream in which to find “xname” and “yname”. Default:
stream="primary"
title
str:(optional) Title to show on this plot. Default: Metadata “title” keyword of first run (if found) or scan_id and starting date/time of first run.
RETURNS
Returns a dict of statistics for each run indexed by
scan_id
, ifstats=True
, elseNone
. A computedfwhm
key is added to the statistics.New in release 1.6.10.
- apstools.utils.plot.select_live_plot(bec, signal)[source]#
Get the first live plot that matches
signal
.PARAMETERS
- bec
object: instance of
bluesky.callbacks.best_effort.BestEffortCallback
- signal
object: The Y axis object (an
ophyd.Signal
)
RETURNS
- object:
Instance of
bluesky.callbacks.best_effort.LivePlotPlusPeaks()
orNone
- apstools.utils.plot.select_mpl_figure(x, y)[source]#
Get the MatPlotLib Figure window for y vs x.
PARAMETERS
- x
object: X axis object (an
ophyd.Signal
)- y
ophyd object: X axis object (an
ophyd.Signal
)
RETURNS
- object or
None
: Instance of
matplotlib.pyplot.Figure()
- apstools.utils.plot.trim_plot_by_name(n=3, plots=None)[source]#
Find the plot(s) by name and replot with at most the last n lines.
Note: this is not a bluesky plan. Call it as normal Python function.
It is recommended to call
trim_plot_by_name()
before the scan(s) that generate plots. Plots are generated from a RunEngine callback, executed after the scan completes.PARAMETERS
- n
int : number of plots to keep
- plots
str, [str], or None : name(s) of plot windows to trim (default: all plot windows)
EXAMPLES:
trim_plot_by_name() # default of n=3, apply to all plots trim_plot_by_name(5) # change from default of n=3 trim_plot_by_name(5, "noisy_det vs motor") # just this plot trim_plot_by_name( 5, ["noisy_det vs motor", "det noisy_det vs motor"]] )
EXAMPLE:
# use simulators from ophyd from bluesky import plans as bp from bluesky import plan_stubs as bps from ophyd.sim import * snooze = 0.25 def scan_set(): trim_plot_by_name() yield from bp.scan([noisy_det], motor, -1, 1, 5) yield from bp.scan([noisy_det, det], motor, -2, 1, motor2, 3, 1, 6) yield from bps.sleep(snooze) # repeat the_scans 15 times uids = RE(bps.repeat(scan_set, 15))
(new in release 1.3.5)
- apstools.utils.plot.trim_plot_lines(bec, n, x, y)[source]#
Find the plot with axes x and y and replot with at most the last n lines.
Note:
trim_plot_lines()
is not a bluesky plan. Call it as normal Python function.EXAMPLE:
trim_plot_lines(bec, 1, m1, noisy)
PARAMETERS
- bec
object : instance of BestEffortCallback
- n
int : number of plots to keep
- x
object : instance of ophyd.Signal (or subclass), independent (x) axis
- y
object : instance of ophyd.Signal (or subclass), dependent (y) axis
(new in release 1.3.5)
Support for IPython profiles#
|
get the IPython shell's namespace dictionary (or globals() if not found) |
return the name of the current ipython profile or |
|
get the IPython shell's namespace dictionary (or empty if not found) |
- apstools.utils.profile_support.getDefaultNamespace(attr='user_ns')[source]#
get the IPython shell’s namespace dictionary (or globals() if not found)
- apstools.utils.profile_support.ipython_profile_name()[source]#
return the name of the current ipython profile or
None
Example (add to default RunEngine metadata):
RE.md['ipython_profile'] = str(ipython_profile_name()) print("using profile: " + RE.md['ipython_profile'])
- apstools.utils.profile_support.ipython_shell_namespace()[source]#
get the IPython shell’s namespace dictionary (or empty if not found)
EPICS PV Registry#
|
Find the ophyd (dotted name) object associated with the given ophyd name. |
|
Find all ophyd objects associated with the given EPICS PV. |
|
Cross-reference EPICS PVs with ophyd EpicsSignalBase objects. |
- class apstools.utils.pvregistry.PVRegistry(ns=None)[source]#
Cross-reference EPICS PVs with ophyd EpicsSignalBase objects.
- apstools.utils.pvregistry.findbyname(oname, force_rebuild=False, ns=None)[source]#
Find the ophyd (dotted name) object associated with the given ophyd name.
PARAMETERS
- oname
str : ophyd name to search
- force_rebuild
bool : If
True
, rebuild the internal registry that maps ophyd names to ophyd objects.- ns
dict or None : Namespace dictionary of Python objects.
RETURNS
- str or
None
: Name of the ophyd object.
EXAMPLE:
In [45]: findbyname("adsimdet_cam_acquire") Out[45]: 'adsimdet.cam.acquire'
(new in apstools 1.5.0)
- apstools.utils.pvregistry.findbypv(pvname, force_rebuild=False, ns=None)[source]#
Find all ophyd objects associated with the given EPICS PV.
PARAMETERS
- pvname
str : EPICS PV name to search
- force_rebuild
bool : If
True
, rebuild the internal registry that maps EPICS PV names to ophyd objects.- ns
dict or None : Namespace dictionary of Python objects.
RETURNS
- dict or
None
: Dictionary of matching ophyd objects, keyed by how the PV is used by the ophyd signal. The keys are
read
andwrite
.
EXAMPLE:
In [45]: findbypv("ad:cam1:Acquire") Out[45]: {'read': [], 'write': ['adsimdet.cam.acquire']} In [46]: findbypv("ad:cam1:Acquire_RBV") Out[46]: {'read': ['adsimdet.cam.acquire'], 'write': []}
Searching databroker catalogs#
|
Searches the databroker v2 database. |
- apstools.utils.query.db_query(db, query)[source]#
Searches the databroker v2 database.
PARAMETERS
- db
object : Bluesky database, an instance of
databroker.catalog
.- query
dict : Search parameters.
RETURNS
- object :
Bluesky database, an instance of
databroker.catalog
satisfying thequery
parameters.
See also
databroker.catalog.search()
Common support of slits
|
Slit size and center as a named tuple |
- class apstools.utils.slit_core.SlitGeometry(width, height, x, y)#
Slit size and center as a named tuple
- height#
Alias for field number 1
- width#
Alias for field number 0
- x#
Alias for field number 2
- y#
Alias for field number 3
Spreadsheet Support#
|
base class: read-only support for Excel files, treat them like databases |
|
Generic (read-only) handling of Excel spreadsheet-as-database |
|
Exception when reading Excel spreadsheet. |
- class apstools.utils.spreadsheet.ExcelDatabaseFileBase(ignore_extra=True)[source]#
base class: read-only support for Excel files, treat them like databases
Use this class when creating new, specific spreadsheet support.
EXAMPLE
Show how to read an Excel file where one of the columns contains a unique key. This allows for random access to each row of data by use of the key.
class ExhibitorsDB(ExcelDatabaseFileBase): ''' content for exhibitors from the Excel file ''' EXCEL_FILE = pathlib.Path("resources") / "exhibitors.xlsx" LABELS_ROW = 2 def handle_single_entry(self, entry): '''any special handling for a row from the Excel file''' pass def handleExcelRowEntry(self, entry): '''identify unique key (row of the Excel file)''' key = entry["Name"] self.db[key] = entry
- class apstools.utils.spreadsheet.ExcelDatabaseFileGeneric(filename, labels_row=3, ignore_extra=True)[source]#
Generic (read-only) handling of Excel spreadsheet-as-database
Note
This is the class to use when reading Excel spreadsheets.
In the spreadsheet, the first sheet should contain the table to be used. By default (see keyword parameter
labels_row
), the table should start in cell A4. The column labels are given in row 4. A blank column should appear to the right of the table (see keyword parameterignore_extra
). The column labels will describe the action and its parameters. Additional columns may be added for metadata or other purposes.The rows below the column labels should contain actions and parameters for those actions, one action per row.
To make a comment, place a
#
in the action column. A comment should be ignored by the bluesky plan that reads this table. The table will end with a row of empty cells.While it’s a good idea to put the
action
column first, that is not necessary. It is not even necessary to name the columnaction
. You can re-arrange the order of the columns and change their names as long as the column names match what text strings your Python code expects to find.A future upgrade [1] will allow the table boundaries to be named by Excel when using Excel’s
Format as Table
[2] feature. For now, leave a blank row and column at the bottom and right edges of the table.PARAMETERS
- filename
str : name (absolute or relative) of Excel spreadsheet file
- labels_row
int : Row (zero-based numbering) of Excel file with column labels, default:
3
(Excel row 4)- ignore_extra
bool : When
True
, ignore any cells outside of the table, default:True
.Note that when
True
, a row of cells within the table will be recognized as the end of the table, even if there are actions in following rows. To force an empty row, use a comment symbol#
(actually, any non-empty content will work).When
False
, cells with other information (in Sheet 1) will be made available, sometimes with unpredictable results.
EXAMPLE
See section The run_command_file() plan – batch scans using a text file for more examples.
(See also example screen shot.) Table (on Sheet 1) begins on row 4 in first column:
1 | some text here, maybe a title 2 | (could have content here) 3 | (or even more content here) 4 | action | sx | sy | sample | comments | | <-- leave empty column 5 | close | | | close the shutter | | 6 | image | 0 | 0 | dark | dark image | | 7 | open | | | | open the shutter | | 8 | image | 0 | 0 | flat | flat field image | | 9 | image | 5.1 | -3.2 | 4140 steel | heat 9172634 | | 10 | scan | 5.1 | -3.2 | 4140 steel | heat 9172634 | | 11 | scan | 0 | 0 | blank | | | 12 | 13 | ^^^ leave empty row ^^^ 14 | (could have content here)
Example python code to read this spreadsheet:
from apstools.utils import ExcelDatabaseFileGeneric, cleanupText def myExcelPlan(xl_file, md={}): excel_file = pathlib.Path(xl_file).absolute() xl = ExcelDatabaseFileGeneric(excel_file) for i, row in xl.db.values(): # prepare the metadata _md = {cleanupText(k): v for k, v in row.items()} _md["xl_file"] = xl_file _md["excel_row_number"] = i+1 _md.update(md) # overlay with user-supplied metadata # determine what action to take action = row["action"].lower() if action == "open": yield from bps.mv(shutter, "open") elif action == "close": yield from bps.mv(shutter, "close") elif action == "image": # your code to take an image, given **row as parameters yield from my_image(**row, md=_md) elif action == "scan": # your code to make a scan, given **row as parameters yield from my_scan(**row, md=_md) else: print(f"no handling for row {i+1}: action={action}") # execute this plan through the RunEngine RE(myExcelPlan("spreadsheet.xlsx", md=dict(purpose="apstools demo"))
- class apstools.utils.spreadsheet.ExcelReadError(*args: Any, **kwargs: Any)[source]#
Exception when reading Excel spreadsheet.
Define symbols used by other modules to define time (seconds).
24 hours (in seconds) |
|
60 minutes (in seconds) |
|
60 seconds (in seconds) |
|
One second of time (the base unit). |
|
7 days (in seconds) |
|
|
Convert Python timestamp (float) to IS8601 time in current time zone. |
- apstools.utils.time_constants.DAY = 86400#
24 hours (in seconds)
- apstools.utils.time_constants.HOUR = 3600#
60 minutes (in seconds)
- apstools.utils.time_constants.MINUTE = 60#
60 seconds (in seconds)
- apstools.utils.time_constants.SECOND = 1#
One second of time (the base unit).
- apstools.utils.time_constants.WEEK = 604800#
7 days (in seconds)